
Control Statements in VB.NET
Kavita K. Bharti

Assistant Professor
Department of Computer

Durga Mahavidyalaya, Raipur

In VB.NET, the control statements are the statements that controls the execution of
the program on the basis of the specified condition. It is useful for determining
whether a condition is true or not. If the condition is true, a single or block of
statement is executed. In the control statement, we will use if- Then, if Then Else, if
Then ElseIf and the Select case statement.

We can define more than one condition to be evaluated by the program with
statements. If the defined condition is true, the statement or block executes according
to the condition, and if the condition is false, another statement is executed.

The following figure shows a common format of the decision control statements to
validate and execute a statement:

o If-Then Statement

o If-Then Else Statement

o If-Then ElseIf Statement

o Select Case Statement

If-Then Statement

The If-Then Statement is a control statement that defines one or more conditions, and
if the particular condition is satisfied, it executes a piece of information or statements.

Syntax:

If condition Then

[Statement or block of Statement]

End If

In If-Then Statement, the condition can be a Boolean, logical, or relational condition,
and the statement can be single or group of statements that will be executed when the
condition is true.

Write a simple program to print greater number between two numbers VB.NET.

Module if_statement2

 Sub Main()

 ?Definition of variables

 Dim no1, no2 As Integer

 Console.WriteLine("Enter any two number:")

 no1 = Console.ReadLine() ?read no1 from user

 no2 = Console.ReadLine() ?read no2 from user

 If no1 > no2 Then

 Console.WriteLine("First number is greater than second number")

 End If

 If no1 < no2 Then

 Console.WriteLine("Second number is greater than First number")

 End If

 Console.WriteLine("press any key to exit...")

 Console.ReadKey()

End Sub

End Module

If-Then-Else Statement

The If-Then Statement can execute single or multiple statements when the condition
is true, but when the expression evaluates to false, it does nothing. So, here comes
the If-Then-Else Statement. The IF-Then-Else Statement is telling what If condition
to do when if the statement is false, it executes the Else statement. Following is the If-
Then-Else statement syntax in VB.NET as follows:

Syntax:

If (Boolean_expression) Then

'This statement will execute if the Boolean condition is true

Else

'Optional statement will execute if the Boolean condition is false

End If

Flow chart

Write a program to check whether the number is even or odd.

Module If_Else_statement

 Sub Main()

 Dim num As Integer

 Console.WriteLine("Enter the Number")

 num = Console.ReadLine() 'read data from console

 If (num Mod 2 = 0) Then ' if condition is true, print the if statement

 Console.WriteLine("It is an even number")

 Else 'otherwise, Else statement is executed.

 Console.WriteLine("It is an odd number")

 End If

 Console.WriteLine("press any key to exit...")

 Console.ReadKey()

 End Sub

End Module

If-Then-ElseIf statement

The If-Then-ElseIf Statement provides a choice to execute only one condition or
statement from multiple statements. Execution starts from the top to bottom, and it
checked for each If condition. And if the condition is met, the block of If the statement
is executed. And if none of the conditions are true, the last block is executed.
Following is the syntax of If-Then-ElseIf Statement in VB.NET as follows:

Syntax

If(condition 1)Then

 ' Executes when condition 1 is true

ElseIf(condition 2)Then

 ' Executes when condition 2 is true

ElseIf(boolean_expression 3)Then

 ' Executes when the condition 3 is true

Else

 ' executes the default statement when none of the above conditions is true.

End If

Flowchart

The following diagram represents the functioning of the If-Else-If Statement in the

VB.NET programming language.

If this condition is true in the flowchart of the if-else-if statement, the statement is

executed within the if block. If the condition is not true, it passes control to the next

ElseIf condition to check whether the condition is matched. And if none of the

conditions are matched, the else block is executed.

Example 1: Write a program to show the uses of If... ElseIf statements.

Module if_elseIf

 Sub Main()

 Dim var1 As Integer

 Console.WriteLine(" Input the value of var1: ")

 var1 = Console.ReadLine()

 If var1 = 20 Then

 'if condition is true then print the following statement'

 Console.WriteLine(" Entered value is equal to 20")

 ElseIf var1 < 50 Then

 Console.WriteLine(" Entered value is less than 50")

 ElseIf var1 >= 100 Then

 Console.WriteLine(" Entered value is greater than 100")

 Else

 'if none of the above condition is satisfied, print the following statement

 Console.WriteLine(" Value is not matched with above condition")

 End If

 Console.WriteLine(" You have entered : {0}", var1)

 Console.WriteLine(" press any key to exit...")

 Console.ReadKey()

 End Sub

End Module

Select Case Statement

n VB.NET, the Select Case statement is a collection of multiple case statements,
which allows executing a single case statement from the list of statements. A selected
case statement uses a variable to test for equality against multiple cases or statements
in a program. If the variable is matched with any test cases, that statement will be
executed. And if the condition is not matched with any cases, it executes the default
statement.

Using the select case statement in VB.NET programming, you can replace the uses of
multiple If-Then-Else If statement from the program for better readability and easy to
use.

Syntax

Following is the syntax of the Select Case statement in VB.NET, as follows:

Select Case [variable or expression]

Case value1 'defines the item or value that you want to match.

// Define a statement to execute

Case value2 'defines the item or value that you want to match.

// Define a statement to execute

Case Else

// Define the default statement if none of the conditions is true.

End Select

Flowchart of Select Case Statement

The following flowchart represents the functioning of the Select case statement in the
VB.NET programming language.

In Flowchart, the Select Case statement represents the evaluating of the process start
from top to bottom. If the expression or value is matched with the first select case,
statement -1 is executed else the control transfer to the next case for checking whether
the expression is matching or not. Similarly, it checks all Select case statements for
evaluating. If none of the cases are matched, the Else block statement will be
executed, and finally, the Select Case Statement will come to an end.

Write a program to display the Days name using the select case statement in VB.NET.

Imports System

Module Select_case

 Sub Main()

 'define a local variable.

 Dim Days As String

 Days = "Thursday"

 Select Case Days

 Case "Monday"

 Console.WriteLine(" Today is Monday")

 Case "Tuesday"

 Console.WriteLine(" Today is Tuesday")

 Case "Wednesday"

 Console.WriteLine("Today is Wednesday")

 Case "Thursday"

 Console.WriteLine("Today is Thursday")

 Case "Friday"

 Console.WriteLine("Today is Friday")

 Case "Saturday"

 Console.WriteLine("Today is Saturday")

 Case "Sunday"

 Console.WriteLine("Today is Sunday")

 Case Else

 Console.WriteLine(" You have typed Something wrong")

 End Select

 Console.WriteLine("You have selected : {0}", Days)

 Console.WriteLine("Press any key to exit...")

 Console.ReadLine()

 End Sub

End Module

